If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-32X+96=0
a = 1; b = -32; c = +96;
Δ = b2-4ac
Δ = -322-4·1·96
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{10}}{2*1}=\frac{32-8\sqrt{10}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{10}}{2*1}=\frac{32+8\sqrt{10}}{2} $
| (3D+2)^4y=0 | | 0=(3(t^2))-16 | | (2D^2-3)y=0 | | 14x-2+3x=40 | | 3+19p-2=7p+71-2p | | 14x-2x+3x=40 | | 3x-7/5-3x+7/4=5x-9/8-3x+9/6 | | y^2-2.4y-1.44=0 | | u^2-17u-5184=0 | | 8x+(-7x)=60 | | r^2+5r+8=0 | | 26=x/9+8 | | X^4-17x^2-5184=0 | | 4=y–5 | | y2-2.4y-1.44=0 | | -b+4=14+4b-1 | | 2.8=n+(-28) | | 5y+y=84 | | 5+y=38 | | x2+9=73 | | r-(-28)=0 | | x2+9=58. | | (3)/(4)c=21 | | 7=5+m | | (6x+4)=34 | | 12=5-n/3 | | (8y-7)=73 | | (5x+7)^2(2x^2-9)^5=0 | | (5x+7)^2(2x-9)^5=0 | | X+3x-5=-6x+100 | | 2(x+3)=3(x-3 | | -2(4)/(5)=-3(1)/(2)n |